
Bradford, K. J. & Nonogaki, H. Seed Development, Dormancy and Germination (Blackwell Publishing Ltd, 2007). https://doi.org/10.1002/9780470988848.
Boesewinkel, F. D. & Bouman, F. The seed: structure. In Embryology of Angiosperms (ed. Johri, B. M.) 567–610 (Springer Berlin Heidelberg, 1984). https://doi.org/10.1007/978-3-642-69302-1_12.
Potokina, E., Sreenivasulu, N., Altschmied, L., Michalek, W. & Graner, A. Differential gene expression during seed germination in barley (Hordeum vulgare L.). Funct. Integr. Genom. 2, 28–39 (2002).
Sreenivasulu, N. et al. Barley grain maturation and germination: Metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol. 146, 1738–1758 (2008).
Soós, V. et al. Transcriptome analysis of germinating maize kernels exposed to smoke-water and the active compound KAR1. BMC Plant Biol. 10, 236 (2010).
Bellieny-Rabelo, D. et al. Transcriptome analysis uncovers key regulatory and metabolic aspects of soybean embryonic axes during germination. Sci. Rep. 6, 36009 (2016).
Jia, Z. et al. Embryo transcriptome and miRNA analyses reveal the regulatory network of seed dormancy in Ginkgo biloba. Tree Physiol. 41, 571–588 (2021).
Kai-Jie, Q. et al. Metabolome and transcriptome analyses unravel the inhibition of embryo germination by abscisic acid in pear. Sci. Hortic. 292, 110652 (2022).
Peirats-Llobet, M. et al. Spatially resolved transcriptomic analysis of the germinating barley grain. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad521 (2023).
Finch-Savage, W. E. & Footitt, S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot. 68, 843–856 (2017).
Sano, N. & Marion-Poll, A. ABA metabolism and homeostasis in seed dormancy and germination. IJMS 22, 5069 (2021).
Sybilska, E. & Daszkowska-Golec, A. A complex signaling trio in seed germination: Auxin-JA-ABA. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2023.05.003 (2023).
Seo, M., Nambara, E., Choi, G. & Yamaguchi, S. Interaction of light and hormone signals in germinating seeds. Plant Mol. Biol. 69, 463–472 (2009).
Fujii, H. et al. In vitro reconstitution of an abscisic acid signaling pathway. Nature 462, 660–664 (2009).
Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009).
Park, S.-Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).
Umezawa, T. et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 106, 17588–17593 (2009).
Vlad, F. et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21, 3170–3184 (2009).
Skubacz, A., Daszkowska-Golec, A. & Szarejko, I. The role and regulation of ABI5 (ABA-insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01884 (2016).
Zhao, H. et al. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytol. 228, 596–608 (2020).
Shu, K., Liu, X., Xie, Q. & He, Z. Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant 9, 34–45 (2016).
Hu, Y. & Yu, D. Brassinosteroid insensitive2 interacts with abscisic acid insensitive5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 26, 4394–4408 (2014).
Steber, C. M. & McCourt, P. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol. 125, 763–769 (2001).
Choe, S. et al. Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiol. 130, 1506–1515 (2002).
Xue, L.-W. et al. Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Zeitschrift für Naturforschung C 64, 225–230 (2009).
Zhang, S., Cai, Z. & Wang, X. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. U. S. A. 106, 4543–4548 (2009).
Cai, Z. et al. GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111, 9651–9656 (2014).
Punzo, P. et al. DRT111/SFPS splicing factor controls abscisic acid sensitivity during seed development and germination. Plant Physiol. 183, 793–807 (2020).
Bi, Y. et al. Arabidopsis ACINUS is O-glycosylated and regulates transcription and alternative splicing of regulators of reproductive transitions. Nat. Commun. 12, 945 (2021).
Lalanne, D. et al. Medicago ABI3 splicing isoforms regulate the expression of different gene clusters to orchestrate seed maturation. Plants 10, 1710 (2021).
Li, Y. et al. Dual roles of the serine/arginine-rich splicing factor SR45a in promoting and interacting with nuclear cap-binding complex to modulate the salt-stress response in Arabidopsis. New Phytol. 230, 641–655 (2021).
Zhang, Q. et al. SKIP regulates ABA signaling through alternative splicing in Arabidopsis. Plant Cell Physiol. 63, 494–507 (2022).
Sybilska, E. & Daszkowska-Golec, A. Alternative splicing in ABA signaling during seed germination. Front. Plant Sci. 14, 1144990 (2023).
Chaudhary, S. et al. Alternative splicing and protein diversity: Plants versus animals. Front. Plant Sci. 10, 708 (2019).
Petrillo, E. Do not panic: An intron-centric guide to alternative splicing. Plant Cell 35, 1752–1761 (2023).
Kim, S. et al. Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Plant Cell Physiol. 49, 1634–1644 (2008).
Laubinger, S. et al. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 105, 8795–8800 (2008).
Raczynska, K. D. et al. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res. 38, 265–278 (2010).
Pabis, M., Neufeld, N., Shav-Tal, Y. & Neugebauer, K. Binding properties and dynamic localization of an alternative isoform of the cap-binding complex subunit CBP20. Nucleus 1, 412–421 (2010).
Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657–668 (1994).
Kmieciak, M., Simpson, C. G., Lewandowska, D., Brown, J. W. S. & Jarmolowski, A. Cloning and characterization of two subunits of Arabidopsis thaliana nuclear cap-binding complex. Gene 283, 171–183 (2002).
Kierzkowski, D. et al. The Arabidopsis CBP20 targets the cap-binding complex to the nucleus, and is stabilized by CBP80. Plant J. 59, 814–825 (2009).
Daszkowska-Golec, A. et al. Mutation in HvCBP20 (cap binding protein 20) adapts barley to drought stress at phenotypic and transcriptomic levels. Front. Plant Sci. 8, 942 (2017).
Hugouvieux, V., Kwak, J. M. & Schroeder, J. I. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106, 477–487 (2001).
Hugouvieux, V. et al. Localization, ion channel regulation, and genetic interactions during abscisic acid signaling of the nuclear mRNA cap-binding protein, ABH1. Plant Physiol. 130, 1276–1287 (2002).
Papp, I., Mur, L., Dalmadi, G., Dulai, S. & Koncz, C. A mutation in the cap binding protein 20 gene confers drought. Plant Mol. Biol. 55, 679–686 (2004).
Jäger, K. et al. New phenotypes of the drought-tolerant cbp20 Arabidopsis thaliana mutant have changed epidermal morphology: New phenotypes of the cbp20 Arabidopsis mutant. Plant Biol. 13, 78–84 (2011).
Daszkowska-Golec, A. et al. Arabidopsis suppressor mutant of abh1 shows a new face of the already known players: ABH1 (CBP80) and ABI4—in response to ABA and abiotic stresses during seed germination. Plant Mol. Biol. 81, 189–209 (2013).
Pieczynski, M. et al. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnol. J. 11, 459–469 (2013).
Li, Z. et al. Coupling of histone methylation and RNA processing by the nuclear mRNA cap-binding complex. Nat. Plants 2, 16015 (2016).
Coulter, M. et al. BaRTv2: A highly resolved barley reference transcriptome for accurate transcript-specific RNA -seq quantification. Plant J. 111, 1183–1202 (2022).
Guo, W., Coulter, M., Waugh, R. & Zhang, R. The value of genotype-specific reference for transcriptome analyses in barley. Life Sci. Alliance 5, e202101255 (2022).
Xiao, S. et al. COS1: An Arabidopsis coronatine insensitive1 suppressor essential for regulation of Jasmonate-mediated plant defense and senescence. Plant Cell 16, 1132–1142 (2004).
Guo, X. et al. E3 ligases MAC3A and MAC3B ubiquitinate UBIQUITIN-SPECIFIC PROTEASE14 to regulate organ size in Arabidopsis. Plant Physiol. 194, 684–697 (2024).
Seyed Rahmani, R. et al. Genome-wide expression and network analyses of mutants in key brassinosteroid signaling genes. BMC Genom. 22, 465 (2021).
Kuhn, J. M., Hugouvieux, V. & Schroeder, J. I. mRNA cap binding proteins: Effects on abscisic acid signal transduction, mRNA processing, and microarray analyses. In Nuclear Pre-mRNA Processing in Plants Vol. 326 (eds Reddy, A. S. N. & Golovkin, M.) 139–150 (Springer Berlin Heidelberg, 2008).
Monaghan, J. et al. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog. 5, e1000526 (2009).
Zhang, S., Xie, M., Ren, G. & Yu, B. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc. Natl. Acad. Sci. U. S. A. 110, 17588–17593 (2013).
Bajczyk, M. et al. Recent insights into plant miRNA biogenesis: Multiple layers of miRNA level regulation. Plants 12, 342 (2023).
Huang, C.-Y. et al. The chromatin-remodeling protein BAF60/SWP73A regulates the plant immune receptor NLRs. Cell Host Microbe 29, 425-434.e4 (2021).
Punzo, P., Grillo, S. & Batelli, G. Alternative splicing in plant abiotic stress responses. Biochem. Soc. Trans. 48, 2117–2126 (2020).
Lorković, Z. J., Wieczorek Kirk, D. A., Lambermon, M. H. L. & Filipowicz, W. Pre-mRNA splicing in higher plants. Trends Plant Sci. 5, 160–167 (2000).
Kralovicova, J., Knut, M., Cross, N. C. P. & Vorechovsky, I. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3′ splice-site organization and activity of U2AF-related proteins. Nucleic Acids Res. 43, 3747–3763 (2015).
Jang, Y. H. et al. A homolog of splicing factor SF1 is essential for development and is involved in the alternative splicing of pre-mRNA in Arabidopsis thaliana. Plant J. 78, 591–603 (2014).
Park, H.-Y. et al. The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. Plant Cell Rep. 36, 1113–1123 (2017).
Reddy, A. S. N. & Shad Ali, G. Plant serine/arginine-rich proteins: Roles in precursor messenger RNA splicing, plant development, and stress responses: Plant SR-rich proteins. WIREs RNA 2, 875–889 (2011).
Lee, K. C. et al. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes. Plant Cell Rep. 36, 1083–1095 (2017).
Zhu, Y. et al. SPLICING FACTOR1 is important in chloroplast development under cold stress. Plant Physiol. 184, 973–987 (2020).
Dikaya, V. et al. Insights into the role of alternative splicing in plant temperature response. J. Exp. Bot. https://doi.org/10.1093/jxb/erab234 (2021).
Palusa, S. G., Ali, G. S. & Reddy, A. S. N. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: Regulation by hormones and stresses: Stress regulation of alternative splicing of SR genes. Plant J. 49, 1091–1107 (2007).
Duque, P. A role for SR proteins in plant stress responses. Plant Signal. Behav. 6, 49–54 (2011).
Kumar, K., Sinha, S. K., Maity, U., Kirti, P. B. & Kumar, K. R. R. Insights into established and emerging roles of SR protein family in plants and animals. WIREs RNA 14, e1763 (2023).
Morton, M., AlTamimi, N., Butt, H., Reddy, A. S. N. & Mahfouz, M. Serine/arginine-rich protein family of splicing regulators: New approaches to study splice isoform functions. Plant Sci. 283, 127–134 (2019).
Kesarwani, A. K. et al. Multifactorial and species-specific feedback regulation of the RNA surveillance pathway nonsense-mediated decay in plants. Plant Cell Physiol. 60, 1986–1999 (2019).
Kalyna, M. et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res. 40, 2454–2469 (2012).
Wang, L. et al. PRP4KA phosphorylates SERRATE for degradation via 20 S proteasome to fine-tune miRNA production in Arabidopsis. Sci. Adv. 8, eabm8435 (2022).
Wang, X. et al. SKIP is a component of the spliceosome linking alternative splicing and the Circadian clock in Arabidopsis. Plant Cell 24, 3278–3295 (2012).
Xing, D., Wang, Y., Hamilton, M., Ben-Hur, A. & Reddy, A. S. N. Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ARGININE-RICH45 uncovers the unexpected roles of this RNA binding protein in RNA processing. Plant Cell 27, 3294–3308 (2015).
Golovkin, M. & Reddy, A. S. N. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1–70K protein. J. Biol. Chem. 274, 36428–36438 (1999).
Day, I. S. et al. Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: Insights into regulated splicing: Interaction of SR45 with spliceosomal components. Plant J. 71, 936–947 (2012).
Stankovic, N. et al. Dynamic distribution and interaction of the Arabidopsis SRSF1 subfamily splicing factors. Plant Physiol. 170, 1000–1013 (2016).
Zhang, X.-N., Mo, C., Garrett, W. M. & Cooper, B. Phosphothreonine 218 is required for the function of SR45.1 in regulating flower petal development in Arabidopsis. Plant Signal. Behav. 9, e29134 (2014).
Saini, S., Sharma, I. & Pati, P. K. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front. Plant Sci. 6, 950 (2015).
Ransbotyn, V. et al. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes. Plant Biotechnol. J. 13, 501–513 (2015).
Nishimura, N. et al. Isolation and characterization of novel mutants affecting the abscisic acid sensitivity of arabidopsis germination and seedling growth. Plant Cell Physiol. 45, 1485–1499 (2004).
Gui, J. et al. OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev. Cell 38, 201–213 (2016).
Bücherl, C. A. et al. Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling. Plant Physiol. 162, 1911–1925 (2013).
Wang, J. et al. Structural insights into the negative regulation of BRI1 signaling by BRI1-interacting protein BKI1. Cell Res. 24, 1328–1341 (2014).
Jiang, J. et al. The intrinsically disordered protein BKI1 is essential for inhibiting BRI1 signaling in plants. Mol. Plant 8, 1675–1678 (2015).
Wang, X. & Chory, J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313, 1118–1122 (2006).
Wang, Y. et al. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72- AOC ’ pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytol. 228, 1336–1353 (2020).
Kobayashi, Y. et al. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors: TRAB1 phosphorylation by SnRK2 protein kinases. Plant J. 44, 939–949 (2005).
Nolan, T. M., Vukašinović, N., Liu, D., Russinova, E. & Yin, Y. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32, 295–318 (2020).
Tang, J., Han, Z. & Chai, J. Q&A: What are brassinosteroids and how do they act in plants?. BMC Biol. 14, 113 (2016).
Daszkowska-Golec, A., Karcz, J., Plociniczak, T., Sitko, K. & Szarejko, I. Cuticular waxes—A shield of barley mutant in CBP20 (cap-binding protein 20) gene when struggling with drought stress. Plant Sci. 300, 110593 (2020).
Szurman-Zubrzycka, M. E. et al. HorTILLUS—A rich and renewable source of induced mutations for forward/reverse genetics and pre-breeding programs in Barley (Hordeum vulgare L.). Front. Plant Sci. 9, 216 (2018).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
Guo, W. et al. 3D RNA-seq: A powerful and flexible tool for rapid and accurate differential expression and alternative splicing analysis of RNA-seq data for biologists. RNA Biol. 18, 1574–1587 (2021).
Tian, F., Yang, D.-C., Meng, Y.-Q., Jin, J. & Gao, G. PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz1020 (2019).
Mascher, M. et al. Long-read sequence assembly: A technical evaluation in barley. Plant Cell 33, 1888–1906 (2021).
Aloy, P., Ceulemans, H., Stark, A. & Russell, R. B. The relationship between sequence and interaction divergence in proteins. J. Mol. Biol. 332, 989–998 (2003).
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
Baptista, R., Fazakerley, D. M., Beckmann, M., Baillie, L. & Mur, L. A. J. Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824). Sci. Rep. 8, 5084 (2018).
Dobin, A. & Gingeras, T. R. Mapping RNA-seq reads with STAR. Curr. Protocols Bioinform. 51, 11–14 (2015).
Jayakodi, M. et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284–289 (2020).
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
Shao, M. & Kingsford, C. Accurate assembly of transcripts through phase-preserving graph decomposition. Nat. Biotechnol. 35, 1167–1169 (2017).
Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).