Ríos, F., Fernández-Arteaga, A., Lechuga, M., Fernández-Serrano, M. Ecotoxicological characterization of surfactants and mixtures of them. Bidoia, E., Montagnolli, R. (eds) Toxicity and Biodegradation Testing. Methods Pharma Toxicol. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7425-2_16 (2018).
Bock, K. J. Surfactant Biodegradation, Surfactant Science Series Vol 3. Swisher RD and Dekker M, New York 1970. https://doi.org/10.1002/ange.19710830821 (1971).
Castro, M. J. L., Ojeda, C. & Cirelli, A. F. Advances in surfactants for agrochemicals. Environ. Chem. Lett. 12, 85–95. https://doi.org/10.1007/s10311-013-0432-4 (2013).
Scott, M. J. & Jones, M. N. The biodegradation of surfactants in the environment. Biochim. Biophys. Acta 1508, 235–251. https://doi.org/10.1016/S0304-4157(00)00013-7 (2000).
Stock, D. & Holloway, P. J. Possible mechanisms for surfactant-induced foliar uptake of agrochemicals. Pesticide Sci. 38, 165–177. https://doi.org/10.1002/ps.2780380211 (1993).
Schreiber, L. & Schönherr, J. Water and Solute Permeability of Plant Cuticles. Measurement and Data Analysis (Springer, Berlin, Heidalberg, 2009).
Mösche, M. Anaerobic degradability of alcohol ethoxylates and related non-ionic surfactants. Biodegradation 15, 327–336. https://doi.org/10.1023/B:BIOD.0000042188.10331.61 (2004).
Motteran, F., Braga, J. K., Sakamoto, I. K., Silva, E. L. & Varesche, M. B. A. Degradation of high concentrations of nonionic surfactant (linear alcohol ethoxylate) in an anaerobic fluidized bed reactor. Sci. Total Environ. 481, 121–128. https://doi.org/10.1016/j.scitotenv.2014.02.024 (2014).
Arand, K., Asmus, E., Popp, C., Schneider, D. & Riederer, M. The mode of action of adjuvants-relevance of physicochemical properties for effects on the foliar application, cuticular permeability, and greenhouse performance of pinoxaden. J. Agric. Food Chem. 66, 5770–5777. https://doi.org/10.1021/acs.jafc.8b01102 (2018).
De Ruiter, H., Uffing, A. J. M., Meinen, E. & Prins, A. Influence of surfactants and plant species on leaf retention of spray solutions. Weed. Sci. 38, 567–572. https://doi.org/10.1017/S00437450005150X (1990).
Taylor, P. The wetting of leaf surfaces. Curr. Opin. Colloid Interface Sci. 16, 326–334. https://doi.org/10.1016/j.cocis.2010.12.003 (2011).
Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8. https://doi.org/10.1007/s004250050096 (1997).
Koch, K. & Ensikat, H. J. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39, 759–772. https://doi.org/10.1016/j.micron.2007.11.010 (2008).
Buchholz, A. Characterization of the diffusion of non-electrolytes across plant cuticles: Properties of the lipophilic pathway. J. Exp. Bot. 57, 1–13. https://doi.org/10.1093/jxb/erl023 (2006).
Skipsey, M. et al. Xenobiotic responsiveness of Arabidopsis thaliana to a chemical series derived from a herbicide safener. J. Biol. Chem. 286, 32268–32276. https://doi.org/10.1074/jbc.M111.252726 (2011).
Schwitzguébel, J. P. Phytoremediation of soils contaminated by organic compounds: Hype, hope and facts. J. Soils Sediments 17, 1492–1502. https://doi.org/10.1007/s11368-015-1253-9 (2017).
Markus, C., Pecinka, A. & Merotto, A. Insights into the role of transcriptional gene silencing in response to herbicide-treatments in Arabidopsis thaliana. Inter. J. Mol. Sci. https://doi.org/10.3390/ijms22073314 (2021).
Marcacci, S., Raveton, M., Ravanel, P. & Schwitzguébel, J. P. Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Environ. Exp. Bot. 56, 205–215. https://doi.org/10.1016/j.envexpbot.2005.02.004 (2006).
Page, V. & Schwitzguébel, J. P. The role of cytochromes P450 and peroxidases in the detoxification of sulphonated anthraquinones by rhubarb and common sorrel plants cultivated under hydroponic conditions. Environ. Sci. Pollut. Res. 16, 805–816. https://doi.org/10.1007/s11356-009-0197-2 (2009).
Dixon, D. P. & Edwards, R. Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J. Biol. Chem. 2848, 21249–21256. https://doi.org/10.1074/jbc.M109.020107 (2009).
Ying, G. G. Fate, behavior and effects of surfactants and their degradation products in the environment. Environ. Int. 32, 417–431. https://doi.org/10.1016/j.envint.2005.07.004 (2006).
Steber, J. & Wierich, P. Metabolites and biodegradation pathways of fatty alcohol ethoxylates in microbial biocenoses of sewage treatment plants. App. Environ. Microbiol. 49, 530–537. https://doi.org/10.1128/aem.49.3.530-537.1985 (1985).
Knowles A (1998) Chemistry and technology of agrochemical formulations. Springer Science & Buiness Media , B.V. ISBN:978-94-010-6080-6
Baales, J., Zeisler-Diehl, V. V., Malkowsky, Y. & Schreiber, L. Interaction of surfactants with barley leaf surfaces: time-dependent recovery of contact angles is due to foliar uptake of surfactants. Planta 255, 1. https://doi.org/10.1007/s00425-021-03785-z (2022).
Gloxhuber, C. Toxicological properties of surfactants. Arch. Toxicol. 32, 245–270. https://doi.org/10.1007/BF00330108 (1974).
Forster, W. A., Zabkiewicz, J. A. & Riederer, M. Mechanisms of cuticular uptake of xenobiotics into living plants: 1. Influence of xenobiotic dose on the uptake of three model compounds applied in the absence and presence of surfactants into Chenopodium album, Hedera helix and Stephanotis floribunda leaves. Pest. Manag. Sci. 60, 1105–1113. https://doi.org/10.1002/ps.918 (2004).
Tian, T. et al. AgriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 45, 122–129. https://doi.org/10.1093/nar/gkx382 (2017).
Baales, J., Zeisler-Diehl, V. V., Narine, S. & Schreiber, L. Interaction of surfactants with Prunus laurocerasus leaf surfaces: time-dependent recovery of wetting contact angles depends on physico-chemical properties of surfactants. Chem. Biol. Technol. Agric. 10, 81. https://doi.org/10.1186/s40538-023-00455-y (2023).
Singh, A., Prasad, S. M. & Singh, R. P. Plant Responses to Xenobiotics (Springer, Singapore, 2016). https://doi.org/10.1007/978-981-10-2860-12016.
Tobin, R. S., Onuska, F. I., Brownlee, B. G., Anthony, D. H. J. & Comba, M. E. The application of an ether cleavage technique to a study of the biodegradation of a linear alcohol ethoxylate nonionic surfactant. Water Res. 10, 529–535. https://doi.org/10.1016/0043-1354(76)90190-1 (1976).
Li, P., Wang, L. & Feng, L. Characterization of a novel Rieske-type alkane monooxygenase system in Pusillimonas sp. strain T7–7. J. Bacteriol. 195, 1892–1901. https://doi.org/10.1128/JB.02107-12 (2013).
Rinaldi, M. A. et al. The roles of β-oxidation and cofactor homeostasis in peroxisome distribution and function in Arabidopsis thaliana. Genetics 204, 1089–1115. https://doi.org/10.1534/genetics.116.193169 (2016).
Tolbert, N. E. & Cohan, M. S. Activation of glycolic acid oxidase in plants. J. Biol. Chem. 204, 639–648 (1953) (PMID: 13117837).
Liu, G., Sánchez-Fernández, R., Li, Z. S. & Rea, A. P. Enhanced multispecificity of Arabidopsis vacuolar multidrug resistance-associated protein-type ATP-binding cassette transporter, AtMRP2. J. Biol. Chem. 276, 8648–8656. https://doi.org/10.1074/jbc.M009690200 (2001).
Bártíková, H. et al. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment. Drug Metab. Rev. 47, 374–387. https://doi.org/10.3109/03602532.2015.1076437 (2015).
Schaedler, T. A. et al. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. J. Biol. Chem. 289, 23264–23274. https://doi.org/10.1074/jbc.M114.553438 (2014).
Yang, Z. Small GTPases: versatile signaling switches in plants. Plant Cell 14, 375–388. https://doi.org/10.1105/tpc.001065 (2002).
Yorimitsu, T., Sato, K. & Takeuchi, M. Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants. Front. Plant Sci. 5, 411. https://doi.org/10.3389/fpls.2014.00411 (2014).
Tang, J., Rose, R. L., Chambers, J. E. (2006) Metabolism of organophosphorus and carbamate Pesticides. Toxicol Organophosphate Carbamate Compounds: Elsevier: 127–143. https://doi.org/10.1016/B978-012088523-7/50011-9
Taguchi, G. et al. Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco. Plant J. 63, 1031–1041. https://doi.org/10.1111/j.1365-313X.2010.04298.x (2010).
D’Auria, J. C., Reichelt, M., Luck, K., Svatos, A. & Gershenzon, J. Identification and characterization of the BAHD acyltransferase malonyl CoA: anthocyanidin 5-O-glucoside-6’’-O-malonyltransferase (At5MAT) in Arabidopsis thaliana. FEBS Lett. 581, 872–878. https://doi.org/10.1016/j.febslet.2007.01.060 (2007).
Thao, N. P. et al. Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol. 169, 73–84. https://doi.org/10.1104/pp.15.00663 (2015).
Forman, H. J., Zhang, H. & Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 30, 1–12. https://doi.org/10.1016/j.mam.2008.08.006 (2009).
Ugalde, J. M. et al. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. Plant Physiol. 186, 125–141. https://doi.org/10.1093/plphys/kiaa095 (2021).
Edwards, R., Dixon, D. P. (2004) Metabolism of natural and xenobiotic substrates by the plant glutathione S-transferase superfamily. In: Sandermann, H. (eds) Molecular Ecotoxicology of Plants. Ecological Studies, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08818-0_2
Bowles, D., Lim, E. K., Poppenberger, B. & Vaistij, F. E. Glycosyltransverases of lipophilic small molecules. Annu. Rev. Plant Biol. 57, 567–597. https://doi.org/10.1146/annurev.arplant.57.032905.105429 (2006).
Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366. https://doi.org/10.1038/s41581-019-0129-4 (2019).
Bricchi, I., Bertea, C. M., Occhipinti, A., Paponov, I. A. & Maffei, M. E. Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis. PloS one 7, e46673. https://doi.org/10.1371/journal.pone.0046673 (2012).
Regente, M. C., Giudici, A. M., Villalaín, J. & De La Canal, L. The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 40, 183–189. https://doi.org/10.1111/j.1472-765X.2004.01647.x (2005).
Simon, C. et al. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato. Plant Cell Environ. 37, 1114–1129. https://doi.org/10.1111/pce.12221 (2014).
Burghardt, M., Schreiber, L. & Riederer, M. Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylates. J. Agric. Food Chem. 46, 1593–1602. https://doi.org/10.1021/jf970737g (1998).
Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433. https://doi.org/10.1038/nature22043 (2017).
Smyth, G. K. (2005). limma: Linear Models for Microarray Data. In: Gentleman, R., Carey, V. J., Huber, W., Irizarry, R. A., Dudoit, S. (eds) Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/0-387-29362-0_23
Law CW, Chen Y, Shi W, Smyth GK (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15. https://doi.org/10.1186/gb-2014-15-2-r29
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R Stat. Soc. 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 6, e21800. https://doi.org/10.1371/journal.pone.0021800 (2011).
Thimm, O. et al. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939. https://doi.org/10.1111/j.1365-313X.2004.02016.x (2004).
Kersey, P. J. et al. Ensembl genomes 2018: An integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res. 46, 802–808. https://doi.org/10.1093/nar/gkx1011 (2018).