Salehi-Lisar, S. Y. & Bakhshayeshan-Agdam, H. Drought stress in plants: Causes, consequences, and tolerance. In Drought Stress Tolerance in Plants Vol. 1 (eds Hossain, M. A. et al.) 1–16 (Springer International Publishing, 2016).
Nezhadahmadi, A., Prodhan, Z. H. & Faruq, G. Drought tolerance in wheat. Sci. World J. 2013, 1–12 (2013).
Toscano, S., Farieri, E., Ferrante, A. & Romano, D. Physiological and biochemical responses in two ornamental shrubs to drought stress. Front. Plant Sci. 7, 645–657 (2016).
Velázquez-Márquez, S. et al. Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L. Plant Physiol. Biochem. 96, 29–37 (2015).
Emami Bistgani, Z., Siadat, S. A., Bakhshandeh, A., Ghasemi Pirbalouti, A. & Hashemi, M. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J. 5, 407–415 (2017).
Falqueto, A. R. et al. Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Sci. Hortic. 224, 238–243 (2017).
Kadota, Y. et al. Cell-cycle-dependent regulation of oxidative stress responses and Ca2+ permeable channels NtTPC1A/B in tobacco BY-2 cells. Biochem. Biophys. Res. Commun. 336, 1259–1267 (2005).
Yang, X. et al. Response mechanism of plants to drought stress. Horticulturae 7, 50 (2021).
Alcázar, R. et al. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta 231, 1237–1249 (2010).
Rangan, P., Subramani, R., Kumar, R., Singh, A. K. & Singh, R. Recent Advances in polyamine metabolism and abiotic stress tolerance. BioMed Res. Int. 2014, e239621 (2014).
Fujita, M. et al. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9, 436–442 (2006).
Li, X., Tan, D.-X., Jiang, D. & Liu, F. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. J. Pineal Res. 61, 328–339 (2016).
Liu, L. et al. Exogenous allantoin improves the salt tolerance of sugar beet by increasing putrescine metabolism and antioxidant activities. Plant Physiol. Biochem. 154, 699–713 (2020).
Wei, B., Hou, K., Zhang, H., Wang, X. & Wu, W. Integrating transcriptomics and metabolomics to studies key metabolism, pathways and candidate genes associated with drought-tolerance in Carthamus tinctorius L. Under drought stress. Ind. Crops Prod. 151, 112465 (2020).
Zhang, C. & Huang, Z. Effects of endogenous abscisic acid, jasmonic acid, polyamines, and polyamine oxidase activity in tomato seedlings under drought stress. Sci. Hortic. 159, 172–177 (2013).
Liu, J.-H., Kitashiba, H., Wang, J., Ban, Y. & Moriguchi, T. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol. 24, 117–126 (2007).
Groppa, M. D. & Benavides, M. P. Polyamines and abiotic stress: Recent advances. Amino Acids 34, 35–45 (2008).
Duan, J., Li, J., Guo, S. & Kang, Y. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J. Plant Physiol. 165, 1620–1635 (2008).
Tabur, S. & Demir, K. Protective roles of exogenous polyamines on chromosomal aberrations in Hordeum vulgare exposed to salinity. Biologia 65, 947–953 (2010).
Özmen, S., Tabur, S., Öney-Birol, S. & Özmen, S. The effect of exogenous spermine application on some biochemichal and molecular properties in Hordeum vulgare L. under both normal and drought stress. Biologia 77, 193–202 (2022).
Ozmen, S., Tabur, S. & Oney-Birol, S. Alleviation role of exogenous cadaverine on cell cycle, endogenous polyamines amounts and biochemical enzyme changes in barley seedlings under drought stress. Sci. Rep. 13, 17488 (2023).
Kusano, T., Yamaguchi, K., Berberich, T. & Takahashi, Y. Advances in polyamine research in 2007. J. Plant Res. 120, 345–350 (2007).
Capell, T., Bassie, L. & Christou, P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl. Acad. Sci. USA 101, 9909–9914 (2004).
Tadele, Z. Grasses as Food and Feed (BoD – Books on Demand, 2018).
World Barley Production 2023/2024. Statista. https://www.statista.com/statistics/271973/world-barley-production-since-2008/.
Otto, F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol. 33, 105–110 (1990).
Anlı, R. E., Vural, N., Yılmaz, S. & Vural, Y. The determination of biogenic amines in Turkish red wines. J. Food Compos. Anal. 17, 53–62 (2004).
Ozden, M., Demirel, U. & Kahraman, A. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci. Hortic. 119, 163–168 (2009).
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Li, H. S. Principles and Techniques of Plant Physiological Biochemical Experiment 260–263 (Higher Education Press, 2000).
Beauchamp, C. & Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971).
Beers, R. F. & Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140 (1952).
Kato, M. & Shimizu, S. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Can. J. Bot. 65, 729–735 (1987).
Razem, F. A., Baron, K. & Hill, R. D. Turning on gibberellin and abscisic acid signaling. Curr. Opin. Plant Biol. 9, 454–459 (2006).
De Veylder, L., Beeckman, T. & Inzé, D. The ins and outs of the plant cell cycle. Nat. Rev. Mol. Cell Biol. 8, 655–665 (2007).
Kitsios, G. & Doonan, J. H. Cyclin dependent protein kinases and stress responses in plants. Plant Signal. Behav. 6, 204–209 (2011).
Skirycz, A. et al. Pause-and-Stop: The effects of osmotic stress on cell proliferation during early leaf development in arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23, 1876–1888 (2011).
Inzé, D. & De Veylder, L. Cell cycle regulation in plant development. Annu. Rev. Genet. 40, 77–105 (2006).
West, G., Inzé, D. & Beemster, G. T. S. Cell cycle modulation in the response of the primary root of arabidopsis to salt stress. Plant Physiol. 135, 1050–1058 (2004).
Zhao, L. et al. Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS ONE 9, e106070 (2014).
Schuppler, U., He, P.-H., John, P. C. L. & Munns, R. Effect of water stress on cell division and Cdc2-Like cell cycle kinase activity in wheat leaves. Plant Physiol. 117, 667–678 (1998).
Setter, T. L. & Flannigan, B. A. Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J. Exp. Bot. 52, 1401–1408 (2001).
Yamashita, T. et al. Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle. Int. J. Biochem. Cell. Biol. 45, 1042–1050 (2013).
Bano, C., Amist, N. & Singh, N. B. Role of polyamines in plants abiotic stress tolerance: Advances and future prospects. In Plant Life Under Changing Environment (eds Tripathi, D. K. et al.) 481–496 (Academic Press, 2020).
Liu, H. P., Dong, B. H., Zhang, Y. Y., Liu, Z. P. & Liu, Y. L. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci. 166, 1261–1267 (2004).
Ma, R. et al. The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions. J. Arid Environ. 63, 177–190 (2005).
Li, L. et al. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiol. Biochem. 129, 35–55 (2018).
Ebeed, H. T., Hassan, N. M. & Aljarani, A. M. Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol. Biochem. 118, 438–448 (2017).
Beck, E. H., Fettig, S., Knake, C., Hartig, K. & Bhattarai, T. Specific and unspecific responses of plants to cold and drought stress. J. Biosci. 32, 501–510 (2007).
Wang, X. H. et al. Effects of exogenous polyamines on nitrate tolerance in cucumber. Russ. J. Plant Physiol. 63, 549–557 (2016).
Kaur-sawhney, R., Tiburcio, A. F., Altabella, T. & Galston, A. W. Polyamines in plants: An overview. J. Cell Mol. Biol. 2, 1–12 (2002).
Jnandabhiram, C. & Sailen Prasad, B. Water stress effects on leaf growth and chlorophyll content but not the grain yield in traditional rice (Oryza sativa Linn.) genotypes of assam, India II. protein and proline status in seedlings under PEG induced water stress. Am. J. Plant Sci. 3, 971–980 (2012).
Mahlagha, G., Maryam, G., Tannaz, A. & Bahareh, A. M. Investıgation of proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in akria and mobil tomato cultivars. Iran. J. Plant Physiol. 3, 651–658 (2013).
Akhzari, D. & Pessarakli, M. Effect of drought stress on total protein, essential oil content, and physiological traits of Levisticum officinale Koch. J. Plant Nutr. 39, 1365–1371 (2016).
Shallan, M., Hassan, H., Namich, A. & Ibrahim, A. Effect of sodium niroprusside, putrescine and glycine betaine on alleviation of drought stress in cotton plant. Am. Eurasian J. Agric. Environ. Sci. 12, 1252–1265 (2012).
Mohammadi, H., Ghorbanpour, M. & Brestic, M. Exogenous putrescine changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought stress conditions. Ind. Crops Prod. 122, 119–132 (2018).
Hassan, N., Ebeed, H. & Aljaarany, A. Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiol. Mol. Biol. Plants 26, 233–245 (2020).
Kim, Y.-H., Khan, A. L., Waqas, M. & Lee, I. J. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. Front. Plant Sci. 8, 510 (2017).
Ben Ammar, W. et al. Cadmium effects on mineral nutrition and lipid contents in tomato leaves. J. Soc. Biol. 199, 157–163 (2005).
Skowron, E. & Trojak, M. Effect of exogenously-applied abscisic acid, putrescine and hydrogen peroxide on drought tolerance of barley. Biologia 76, 453–468 (2021).
Nouairi, I. et al. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci. 170, 511–519 (2006).
Harinasut, P., Poonsopa, D. & Roengmongkol, K. Salinity effects on antioxidant enzymes in mulberry cultivar. Sci. Asia 29, 109–113 (2003).
Gapinska, M., Skłodowska, M. & Gabara, B. Effect of short and long term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol. Plant. 30, 11–18 (2007).
Attia, H., Karray, N. & Lachaâl, M. Light interacts with salt stress in regulating superoxide dismutase gene expression in Arabidopsis. Plant Sci. 177, 161–167 (2009).
Buyuk, I., Soydam Aydin, S. & Aras, S. Molecular responses of plants to stress conditions. Turk. Hij. Den. Biyol. Derg. 69, 97–110 (2012).
Miller, G. et al. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol. 144, 1777–1785 (2007).
Sun, L. et al. Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. Int. J. Mol. Sci. 21, 782 (2020).
Dugasa, M. T., Cao, F., Ibrahim, W. & Wu, F. Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiol. Plant. 165, 134–143 (2019).
Aalipour, H., Nikbakht, A., Etemadi, N., Rejali, F. & Soleimani, M. Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Sci. Hortic. 261, 108923 (2020).